Legacy Product

Fusion 5.10
    Fusion 5.10

    Evaluates performance of a QnA pipeline

    additionalParams - string

    Additional query parameters to pass to return resultsfrom Fusion. Please specify in dictionary format: e.g. { "rowsFromSolrToRerank": 20,"fq": "type:answer" }"

    appName - stringrequired

    Fusion app where indexed documents or QA pairs live.

    collectionName - stringrequired

    Fusion collection where indexed documents or QA pairs live

    doWeightsSelection - boolean

    Whether to perform grid search to find the best weights combination for ranking scores for query pipeline's Compute Mathematical Expression stage"

    Default: true

    id - stringrequired

    The ID for this job. Used in the API to reference this job. Allowed characters: a-z, A-Z, dash (-) and underscore (_)

    <= 63 characters

    Match pattern: [a-zA-Z][_\-a-zA-Z0-9]*[a-zA-Z0-9]?

    inputEvaluationCollection - stringrequired

    Collection to pull labeled data for use in evaluation

    >= 1 characters

    kList - string

    The k retrieval position that will be used to compute for each metric

    Default: [1,3,5]

    matchFieldInFile - string

    Field which contains id or text of the ground truth answer in the evaluation collection

    Default: answer_id

    matchFieldInFusion - string

    Field name in Fusion which contains answer id or text for matching ground truth answer id or text in the evaluation collection

    Default: doc_id

    metricsList - string

    List of metrics that should be computed during evaluation. e.g.["recall","precision","map","mrr"]

    Default: ["recall"]

    outputEvaluationCollection - stringrequired

    Collection to store evaluation results (recommended collection is job_reports)

    >= 1 characters

    queryPipelineName - stringrequired

    QnA query pipeline name

    rankingScoreField - string

    Score to be used for ranking and evaluation

    Default: ensemble_score

    returnFields - stringrequired

    Fields (comma-separated) that should be returned from the main collection (e.g. question, answer). The job will add them to the output evaluation

    samplingProportion - number

    The proportion of data to be sampled from the full dataset. Use a value between 0 and 1 for a proportion (e.g. 0.5 for 50%), or for a specific number of examples, use an integer larger than 1. Leave blank for no sampling

    scoreListForWeights - string

    Ranking scores (comma-separated) used for ensemble in the query pipeline's Compute Mathematical Expression stage. The job will perform weights selection for the listed scores

    Default: score,vectors_distance

    seed - integer

    Random seed for sampling

    Default: 12345

    solrScaleFunc - string

    Function used in the pipeline to scale Solr scores. E.g., scale by max Solr score retrieved (max), scale by log with base 10 (log10) or take squre root of score (pow0.5)

    Default: max

    sparkConfig - array[object]

    Provide additional key/value pairs to be injected into the training JSON map at runtime. Values will be inserted as-is, so use " to surround string values

    object attributes:{key required : {
     display name: Parameter Name
     type: string
    }
    value : {
     display name: Parameter Value
     type: string
    }
    }

    targetRankingMetric - string

    Target ranking metric to optimize during weights selection

    Default: recall@3

    testQuestionFieldInFile - string

    Defines the field in the collection containing the test question

    Default: question

    type - stringrequired

    Default: argo-qna-evaluate

    Allowed values: argo-qna-evaluate